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ABSTRACT: Fracture mechanical properties of a very soft solidified
foam of polyethylene with Young’s modulus about 1 MPa are studied by
changing stretching velocity in a wide range, by using sheets of the
material in order to suppress finite-size effects. Unexpectedly, we find that
the fracture can be described well by linear elastic fracture mechanics for a
given fracture rate in the wide range. This allows a direct determination of
velocity-dependent fracture energy of the soft foam. As a result, we find
that the fracture energy is composed of a static plastoelastic component
and another dynamic viscoelastic component, elucidating a simple
physical interpretation of each component and giving guiding principles
useful for practical applications to reinforce industrial polymer materials.
Furthermore, we introduce a finite stress criterion for fracture that is similar in spirit to the cohesive zone model and, using our
data, demonstrate that this stress criterion is consistent with the Griffith’s energy balance.

In nature and in daily life, there is a variety of cellular structures
or foam solids, ranging from familiar ones, such as cork, balsa,

bread, coral, and apples,1 to exotic remarkable ones, such as the
stereom of echinoderms,2 the skeleton of a certain sponge,3 and
the frustules of diatoms.4 Cellular solids are generally lightweight
smart materials like spider webs5,6 and support our life, for
example, daily by their insulating or shock-absorbing features.
Active studies on foam solids to date have revealed, e.g., (1)
simple fracture mechanical properties that are well-understood as
a function of the volume fraction of solid ϕ7−9 and (2)
advantages of the porous structure for reinforcement.10,11

However, experimental studies are limited to hard cellular solids
with Young’s modulus E larger than 3000 MPa, such as
poly(methyl acrylate) (PMA), rigid polyurethane (PU), and
cellular glass. In addition, any velocity dependences of fracture
properties of foam solids have never been discussed in a
systematic way, while such an issue has received considerable
attention for adhesive interface,12−14 flexible laminates,15

viscoelastic solids,16,17 and weakly cross-linked gels.18,19

Recently, a very soft polyethylene foam with E around 1 MPa
has been studied, and scaling laws different from those for hard
porous materials were established.20 Here, we study the fracture
energy of similar soft foams with changing fracture rate in a wide
range to surprisingly find that linear elastic fracture mechan-
ics21,22 works well for a fixed velocity in the wide range. The
velocity-dependent fracture energy is shown to be composed of a
static plastoelastic component and another dynamic viscoelastic
component, with the latter scaling linearly with the rate. The
velocity dependence originates from that of a yield stress that is
introduced through the opening distance at crack tips (Figure 1).
Furthermore, we demonstrate that the Griffith criterion can be
regarded as a stress criterion: we find with our data that the
Griffith’s energy-balance criterion23 is equivalent to the criterion
that failure occurs when a local critical stress matches a maximum
force appearing at a crack tip.

■ RESULTS
The foam sheet without any artificial cracks shows a quasilinear-
elastic stress−strain relation for relatively small deformations for
the pulling speeds of the wire in the range from V = 0.1 to 1.6
mm/s, as demonstrated in Figure 2a. The relation for a given
speed is well reproducible (although the breakage points slightly
depend on samples): independent two representative measure-
ments are shown to agree well with each other in Figure 2a.
Young’s modulus E determined by the initial linear region is
given as a function of the pulling velocity V in Figure 2b. The
velocity dependence is weak and can be expressed as E = E0 +
ΔE(V) with E0 ≫ ΔE(V) and E0 ≃ 1 MPa.
The failure stress σf are obtained as a function of the initial half

length a of a linear crack, introduced by a sharp knife, in the range
from a = 0.5 to 8 cm, as demonstrated in Figure 3a,b; here, each
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Figure 1. (a,b) Magnified images on a crack tip near the critical state for
failure with different magnifications.
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data point is obtained from a single measurement, reflecting the
margin for the judgment of the onset of failure as an error bar as
discussed in Experimental Section; note that the error bars are
rather small. The insets show remarkably that the data follow the
formula of Griffith’s failure stress for the plane stress condition
(this condition is appropriate for thin sheets as in the present
experiment), which is given by
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where G is the fracture energy per fracture area.
The fracture energy G is determined from the measurements

of σf as a function of a for a given V, as in Figure 3a,b. The results

as a function of V is given in Figure 4a, which shows relatively
weak dependence and the dependence can be well described in
the form

= + Δ ≡ +G G G V G V V( ) (1 / )0 0 0 (2)

withG0≫ΔG(V),G0 = 128± 5 J/m2, andV0 = 2.87± 0.64mm/
s.

■ COMPARISON WITH PREVIOUS RESULTS
The Young’s modulus and fracture energy obtained above are
consistent with the ones obtained in ref 20, in which the same
product is examined to give the values of E and G similar to
above. In the previous work, unlike in the present experiment, the
pulling velocity was not varied and limited only to one fixed value
about 1 mm/s, while the E and G were obtained as a function of
volume fraction ϕ for the fixed speed, establishing the simple
linear relations, E = ϕELDP and G = ϕGLDP, with ELDP and GLDP
Young’s modulus and the fracture energy, respectively, if ϕ were
one: ELDP and GLDP correspond to the ones for low-density
polyethylene (LDP). In ref 20, the same product but with
different thickness (0.5, 1, and 2 mm) was studied; the cell size,
the volume fraction, and thus Young’s modulus and the fracture
energy were well-defined for samples in the same production lot
for a given thickness but dependent on production lots.
In the present samples, an average diameter d of the cells is

0.743 ± 0.143 mm and an average volume fraction ϕ is 0.0300 ±
0.005, which are both similar to the values obtained for the
samples used in ref 20. This value ofϕ implies that ELDP andGLDP
for the present samples (E≃ 1MPa andG≃ 130 J/m2) are of the
order of 30 MPa and 3 kN/m2; These values are reasonable for
LDP.7,24,25

■ VELOCITY DEPENDENT YOUNG’S MODULUS
The weak velocity dependence of E (and the corresponding
ELDP), i.e., the slight increase of E with velocity, might originate
because effective cross-link points, such as entanglement points
and small crystalline regions, possess different time scales for

Figure 2. (a) Stress σ vs strain ε at velocity V = 0.1 and 1.6 m/s. At each
velocity, two representative measurements agree well with each other,
suggesting high reproducibility. Two solid lines and one horizontal line
are guides for the eye, representing the initial linear regimes and the yield
stress σy discussed below, respectively. (b) Young’s modulus E vs V.

Figure 3. (a,b) Failure stress σf vs half crack length a at velocity V = 0.1
(a) and 1.6 mm/s (b). The insets show the same data in log scales.

Figure 4. (a) Fracture energy G vs V. (b) Agreement of local stress σc
and maximum stress σm at the level of scaling laws in the experimental
range of velocity.
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releasing their topological and/or geometrical constraints. When
stretched slowly, many of the effective cross-links could be
”unfolded”, making Young’s modulus smaller (see refs 18 and 26
for a similar idea). Note that the elastic modulus can be roughly
estimated as the thermal energy kBTmultiplied by the density of
effective cross-links.

■ VELOCITY DEPENDENT FRACTURE ENERGY

The static component of the fracture energy G0 (≃ 128 J/m2) is
much larger than a typical surface energy for braking chemical
bonds (≃ 1 J/m2). In linear elastoplastic fracture mechanics, it is
well established that the fracture energy is expressed as σyδ, with
σy the yield stress and δ the crack opening distance.

21,22 As seen
in Figure 1, δ in the present case seems comparable to a typical
foam size d (≃ 0.743 mm), i.e., δ≃ d. This implies σy≃ 0.17MPa
for the foams, giving a yield stress σy,LDP = σy/ϕ≃ 5.7MPa for the
corresponding LDP; this is a plausible value for LDP,7,24,25

suggesting that the static competent G0 has basically an
elastoplastic origin: G0 ≃ σyδ. It is quite interesting that the
stress−strain plots in Figure 2a deviate from the initial linear
regime around at the above-introduced yield stress of foam σy ≃
0.17 MPa.
On the contrary, the dynamic component G0V/V0, linearly

dependent on the velocityV can be interpreted as a viscous effect.
If we introduce an effective viscosity η, corresponding to viscous
flow in samples induced by a finite pulling speed, a characteristic
viscous stress is estimated as ηV/d. Here, we assume the region of
the flow is limited to a dimension comparable to the cell size d (≃
δ) near the tip where the stress is significantly concentrated. This
assumption is plausible from the magnified views around the
crack tip in Figure 1. It is natural that this extra viscous
component is added to the static yield stress σy: ΔG ≃ η(V/d)δ,
which results in V0 ≃ (G0/η)d/δ. From this expression, the
effective viscosity of the foam is estimated as η ≃ 0.04 MPa·s,
which suggests a viscosity of the corresponding LDP: ηLDP≃ η/ϕ
≃ 1.5 MPa·s. Considering that typical glass transition temper-
atures Tg of LDP are far below ambient temperatures (Tg ≃ −20
to−120 °C), viscosity of the foam can be very roughly estimated
by the reptationmodel,27 in which viscosity of entangled polymer
is predicted as ηLDP ≃ ηmonN

3/Ne
2 with N the number of

monomers,Ne (≃100) the entanglement distance, and ηmon (≃ 1
mPa·s) the viscosity of monomers. This crude estimation implies
a plausible value N ≃ 104.
In summary, the fracture energy can be expressed as

σ δ≃ ∼G y (3)

where σ̃y = σy + ηV/d = ϕ(σy,LDP + ηLDPV/d). Namely, the
velocity-dependent yield stress σ̃y is given as the sum of the static
(plastoelastic) and dynamic (viscoelastic) components.
Equation 3 leads to a number of simple guiding principles for

toughening soft foams. For the reinforcement, it is advantageous
to make (1) N larger, which leads to the increase in η, thus the
increase inΔG, (2) d larger, which leads to increase in δ, thus the
increase in G0, (3) ϕ larger, which leads to increase in G. Among
them, (1) may be the most efficient because η strongly depends
on N (η ∼ N3) and (1) is also effective for the reinforcement of
the corresponding LDP, or other polymer solids, in general:
polymer materials can efficiently be reinforced for fracture at
finite rates by increasing N. In addition, (2) and (3) could be
applicable for other soft solidified foams.

■ STRESS CRITERION FOR FAILURE AND GRIFFITH’S
ENERGY BALANCE

Following the idea of Griffith’s flaws, materials without any
macroscopic cracks start to fail at certain defects that play the role
of small cracks. On the basis of this idea, a critical failure stress σc
for the present foams can be defined as

σ ≃ EG d( / )c
1/2

(4)

by regarding the crack size a in eq 1 with the cell size d.
On the other hand, the maximum stress σm appearing at a crack

tip can be estimated as follows. In linear elastic fracture
mechanics, the stress σ(r) near a tip of a crack of size a is
concentrated compared with a remotely applied stress σ0 as σ(r)
≃ σ0(a/r)

1/2, with r the distance from the crack tip. This stress
mathematically diverges at the tip, i.e., r = 0. However, this
divergence is fictitious and the valid range of r should actually be
cutoff at a certain small length scale rc, below which the
continuum description breaks down. The cutoff stress σ(rc) has
been shown to scale as the maximum stress appearing at a crack
tip.10,11,28−30 In the present case, the cutoff scale rc should be the
cell size d, which gives

σ σ≃ a d( / )m 0
1/2

(5)

A plausible stress criterion for failure defined from the two
stresses is σc ≃ σm: failure occurs when the maximum stress at a
crack tip reaches the critical stress. When this stress criterion is
solved for σ0, which should be here identified with a failure stress
σf* defined via the stress criterion, we obtain σf* ≃ (EG/a)1/2,
which is nothing but the Griffith’s failure formula in eq 1,
conventionally obtained as a result of energy balance. The
present arguments suggest that Griffith’s energy balance can be
viewed as a stress criterion if critical failure stress and the
maximum crack-tip stress are properly introduced, while the
energy-balance criterion and a stress criterion for failure are often
considered as different and independent concepts. We stress here
that the finite stress model introduced here is largely consistent
with a well-accepted cohesive zone or strip yield model that has
been widely used to describe a broad range of similar
problems.21,22,31,32

In fact, we can check with our data, for a given velocity, that the
above stress criterion actually holds, while our data are consistent
with the Griffith criterion (i.e., the data can be described by eq 1).
To show this, we determine σc and the critical value of σm on the
basis of eqs 4 and 5 with assuming the numerical coefficients 1
and 0.705, respectively, by using experimental values of E, G, d,
and σf (the critical value of σm is estimated as an average over a by
setting σ0 to σf). As a result, the two stresses σc and σm thus
obtained agree well with each other over the full range of V
examined in the present study, as shown in Figure 4b. This
establishes that the stress criterion holds for the data at the level
of scaling laws.

■ CONCLUSION
We have shown that the velocity-dependent fracture energy for a
soft solidified foam is composed of plastoelastic and viscoelastic
components. We thereby provide a simple scenario for
fundamental understanding of velocity-dependent fractures of
polymer foams. In principle, the scenario may be applicable to
other polymer foams and polymer solids. The idea of effective
viscosity could be useful in understanding the physics of polymer
dynamics in various contexts, such as viscoelastic and/or
plastoelastic phenomena, which include crazing,26 adhe-
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sion,12−17 and fracture.18,19 In addition, we demonstrated that
the Griffith’s energy-balance can be viewed as a stress criterion,
introducing a finite stress model similar in spirit to the cohesive
zone model. This criterion is actually a generalized version of the
one employed in ref 33. Furthermore, our results are useful for
applications: we provided a number of simple guiding principles
for toughening soft foams. Some of the principles are universal
and can be applied to the reinforcement of other soft solidified
foams, LDP, and other polymer solids, in general. We thereby
envision that the present results would contribute significantly to
our understanding of physics of polymers and fracture of
materials, providing simple and practical principles for the
reinforcement of industrial polymer materials.

■ EXPERIMENTAL SECTION
We examined a commercially available shock-absorbing sheet for
packing, Lightron S no. 52 (Sekisuiplastics), of thickness 1 mm. The
milk-white soft sheets suitable for wrapping fragile things such as
porcelain are a closed-cell foam of solidified non-cross-linked poly-
ethylene (see Figure 1). Unlike usual foams,7 volume collected at the
edges of cells is less than or comparable to the volume of the wall of cells.
The foam sheets are anisotropic: they are slightly wavy when not
stretched as a result of the manufacturing process. In the present
experiment, the tensile force is always applied in the direction
perpendicular to the wavy texture.
To minimize finite-size corrections, we developed a fracture

measurement system that can hold a sheet of width and height both
about 50 cm, which are much larger than the thickness (1 mm). A
sample sheet that is clamped by two aluminum plates of 1 m long is
homogeneously stretched in the direction perpendicular to the long
plates through a wire connected to a digital force gauge (FCC-50B,
NIDEC-Shimpo) that is mounted on an automatic slider system (EZSM
6D040 K, Oriental Motor). The stretching speed V is changed well over
1 order of magnitude, from 0.1 to 1.6 mm/s. The stretched length is
monitored by a laser distance censor (ZX0-LD300A61, OMRON)
synchronized with the force measurement by the force gauge. The
critical state of failure is judged by the eye with amargin (≃ 1mm) that is
reflected as error bars in the data; see Figure 1 for magnified views of a
crack tip near the critical state. The measurements were performed at
ambient temperatures in the duration from February to April, 2013, at
our university.
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